Geometry and Computation of Antipodal Points on Plane Curves
نویسنده
چکیده
In robotics it is well known that antipodal grasps can be achieved on curved objects in the presence of friction. This paper presents an efficient algorithm that computes, up to numerical resolution, all pairs of antipodal points on a simple, closed, and twice continuously differentiable plane curve. Dissecting the curve into segments everywhere convex or everywhere concave, the algorithm performs simultaneous marching on a pair of such segments with provable convergence and interleaves marching with numerical bisection. It makes use of new insights into the differential geometry at two antipodal points. We have avoided resorting to traditional nonlinear programming which would not be quite as efficient or guarantee to find all antipodal points. A byproduct of our result is a procedure that constructs all common tangent lines of two curves with locally quadratic convergence rate. Dissection and the coupling of marching with bisection introduced in this paper are potentially applicable to many optimization problems involving plane curves and curved shapes.
منابع مشابه
Computation on Parametric Curves with an Application in Grasping
Curved shapes are frequent subjects of maneuvers by the human hand. In robotics, it is well known that antipodal grasps exist on curved objects and guarantee force closure under proper finger contact conditions. This paper presents an efficient algorithm that computes, up to numerical resolution, all pairs of antipodal points on a simple, closed, and twice continuously differentiable plane curv...
متن کاملCurvature-Based Computation of Antipodal Grasps
It is well known that antipodal grasps can be achieved on curved objects in the presence of friction. This paper presents an efficient algorithm that finds, up to numerical resolution, all pairs of antipodal points on a closed, simple, and twice continuously differentiable plane curve. Dissecting the curve into segments everywhere convex or everywhere concave, the algorithm marches simultaneous...
متن کاملSweep Line Algorithm for Convex Hull Revisited
Convex hull of some given points is the intersection of all convex sets containing them. It is used as primary structure in many other problems in computational geometry and other areas like image processing, model identification, geographical data systems, and triangular computation of a set of points and so on. Computing the convex hull of a set of point is one of the most fundamental and imp...
متن کاملOn Boundary Arcs Joining Antipodal Points of a Planar Convex Body
Using notions of Minkowski geometry (i.e., of the geometry of finite dimensional Banach spaces) we find new characterizations of centrally symmetric convex bodies, equiframed curves, bodies of constant width and certain convex bodies with modified constant width property. In particular, we show that straightforward extensions of some properties of bodies of constant Euclidean width are also val...
متن کاملContributions to differential geometry of spacelike curves in Lorentzian plane L2
In this work, first the differential equation characterizing position vector of spacelike curve is obtained in Lorentzian plane $mathbb{L}^{2}.$ Then the special curves mentioned above are studied in Lorentzian plane $mathbb{L}%^{2}.$ Finally some characterizations of these special curves are given in $mathbb{L}^{2}.$
متن کامل