Geometry and Computation of Antipodal Points on Plane Curves

نویسنده

  • Yan-Bin Jia
چکیده

In robotics it is well known that antipodal grasps can be achieved on curved objects in the presence of friction. This paper presents an efficient algorithm that computes, up to numerical resolution, all pairs of antipodal points on a simple, closed, and twice continuously differentiable plane curve. Dissecting the curve into segments everywhere convex or everywhere concave, the algorithm performs simultaneous marching on a pair of such segments with provable convergence and interleaves marching with numerical bisection. It makes use of new insights into the differential geometry at two antipodal points. We have avoided resorting to traditional nonlinear programming which would not be quite as efficient or guarantee to find all antipodal points. A byproduct of our result is a procedure that constructs all common tangent lines of two curves with locally quadratic convergence rate. Dissection and the coupling of marching with bisection introduced in this paper are potentially applicable to many optimization problems involving plane curves and curved shapes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computation on Parametric Curves with an Application in Grasping

Curved shapes are frequent subjects of maneuvers by the human hand. In robotics, it is well known that antipodal grasps exist on curved objects and guarantee force closure under proper finger contact conditions. This paper presents an efficient algorithm that computes, up to numerical resolution, all pairs of antipodal points on a simple, closed, and twice continuously differentiable plane curv...

متن کامل

Curvature-Based Computation of Antipodal Grasps

It is well known that antipodal grasps can be achieved on curved objects in the presence of friction. This paper presents an efficient algorithm that finds, up to numerical resolution, all pairs of antipodal points on a closed, simple, and twice continuously differentiable plane curve. Dissecting the curve into segments everywhere convex or everywhere concave, the algorithm marches simultaneous...

متن کامل

Sweep Line Algorithm for Convex Hull Revisited

Convex hull of some given points is the intersection of all convex sets containing them. It is used as primary structure in many other problems in computational geometry and other areas like image processing, model identification, geographical data systems, and triangular computation of a set of points and so on. Computing the convex hull of a set of point is one of the most fundamental and imp...

متن کامل

On Boundary Arcs Joining Antipodal Points of a Planar Convex Body

Using notions of Minkowski geometry (i.e., of the geometry of finite dimensional Banach spaces) we find new characterizations of centrally symmetric convex bodies, equiframed curves, bodies of constant width and certain convex bodies with modified constant width property. In particular, we show that straightforward extensions of some properties of bodies of constant Euclidean width are also val...

متن کامل

Contributions to differential geometry of spacelike curves in Lorentzian plane L2

‎In this work‎, ‎first the differential equation characterizing position vector‎ ‎of spacelike curve is obtained in Lorentzian plane $mathbb{L}^{2}.$ Then the‎ ‎special curves mentioned above are studied in Lorentzian plane $mathbb{L}%‎‎^{2}.$ Finally some characterizations of these special curves are given in‎ ‎$mathbb{L}^{2}.$‎

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014